
Nubeva TLS Documentation
Release 1.2

Product

Jan 27, 2021

Nubeva TLS User Guide

1 Nubeva TLS Overview 1

2 Getting Started 5
2.1 First Time Users . 5

3 TLS Key Extraction 7
3.1 Installing Nubeva Sensors . 7
3.2 Creating Source Groups . 10
3.3 Launching Decryptors . 12

4 Key Extraction QuickStart 15

5 Projects and Key DBs 17
5.1 Set up a Private Key DB . 18

6 Set up a Fast Key DB 21
6.1 Sensor Container . 21
6.2 Traffic Generator - Optional . 22
6.3 Fast Key DB . 22

7 TLS Key Record Formats 25

8 Modifying Project Elements 29

9 Packet Mirroring 31
9.1 Creating Destinations . 31
9.2 Creating Connections . 32
9.3 Decrypting AWS VPC Traffic Mirroring . 34
9.4 Monitoring Sensors and Decryptors . 35

10 TLS API 37

11 Deploying Security Tools 39
11.1 Tool Launcher . 39
11.2 Moloch . 41
11.3 ntopng . 43
11.4 Suricata . 45
11.5 Wireshark . 47

i

11.6 Zeek . 49

12 Help and Support 53

13 Frequently Asked Questions 55
13.1 OS Vendor Changes . 55
13.2 Government/Compliance Issues . 56
13.3 Interaction with AV/Malware/EDR Products . 56
13.4 TPM-type solutions . 56
13.5 Protocol Updates, Changes & Additions . 56

14 Installing Docker 57
14.1 Ubuntu 18.04 . 57
14.2 AWS Linux . 57
14.3 AWS Linux 2 . 58
14.4 Cent OS 7 . 58
14.5 Red Hat Enterprise Linux 7.5 (RHEL) . 58
14.6 Cloud Provider Instructions . 58

15 Ciphers Supported 59

16 Supported Libraries and Operating Systems 61
16.1 OpenSSL . 61
16.2 NSS Libraries . 65
16.3 WolfSSL . 67
16.4 Linux . 68
16.5 MS Windows . 68

17 Berkeley Packet Filters 71

18 AWS 79
18.1 Using AWS VPC Traffic Mirrors . 79
18.2 Creating AWS IAM Role for Custom Tag Support . 79

ii

CHAPTER 1

Nubeva TLS Overview

Welcome to Nubeva’s TLS, a complete cloud traffic visibility solution for AWS, Azure and GCP.

Traffic visibility is a crucial component in securing the business and keeping systems operational. However, network
monitoring has been blinded in the cloud. Not only is the infrastructure used for monitoring unaccessible in the cloud,
more than 75% of cloud traffic is encrypted. Traditional encryption services cannot adapt and cannot support the
ephemeral nature of cloud workloads, and the newer encryption standards which enforce perfect forward secrecy and
preclude ‘man in the middle’ encryption techniques. IT teams are no longer able to acquire, process and distribute
decrypted packet-level cloud traffic to their selected tools. Consequently, the move to the cloud creates significant
blind-spots and loss of ROI on vital tools that are powerless without access to packet-level cloud data.

Nubeva’s TLS Visibility Solution is a Software as a Service (SaaS) offering that provides complete packet visibil-
ity into any public cloud with breakthrough TLS decryption capabilities that have been designed specifically for the
cloud. Nubeva TLS Visibility Solution’s architecture is comprised of three building blocks: a Nubeva Manager
(console), Nubeva Sensors (or Sensors) and Nubeva Decryptors (or Decryptors). The archi-
tecture is scalable, secure, and traffic visibility is achieved without sending decrypted packets across the network.
Nubeva Sensors discover TLS/SSL session keys and forward them to secure storage. Sensors also mirror packets
within a cloud instance and forwards them to Nubeva Decryptors running on security and analysis tool instances.
Nubeva TLS Decrypt works with any cloud packet broker solution including AWS VPC Traffic Mirroring. Nubeva
Decryptors retrieve session keys from the secure storage, based on the session identifiers in the packet flows they
receive, and produce both encrypted and decrypted traffic flows on an interface which a security tool running on the
same cloud instance can access.

1

Nubeva TLS Documentation, Release 1.2

Figure 1: TLS Visibility Solution architecture with AWS VPC Traffic Mirroring

Figure 1 depicts a sample deployment in an AWS cloud using AWS VPC Traffic Mirroring. Dotted lines represent
control messages, dashed line represent session keys, and solid lines represent mirrored traffic.

2 Chapter 1. Nubeva TLS Overview

Nubeva TLS Documentation, Release 1.2

Figure 2: TLS Visibility services architecture with Nubeva Sensors discovering keys and mirroring traffic.

Note: Nubeva Decryptors handle the synchronization of keys with packet flows, assuring that all the traffic
received is matched with keys, and is fully decrypted.

When any instance containing a Nubeva Sensor or a Nubeva Decryptor launches, the sensor/decryptor will
automatically connect to the Nubeva Manager (console) and register itself, obtain configuration updates and
automatically install software updates when upgrades are available. Sensors and Decryptors use HTTPS to make
REST API calls to the Cloud Console. Control traffic always originates at sensors and decryptors. Data plane traffic
(mirrored traffic) is routed based on the users’ network configurations. Mirrored packets are never sent to the Cloud
Console. The control plane does not directly modify, nor does it require the user to modify networks or security setting,
save for allowing outbound HTTPS (TCP port 443) from subnets containing sensors or decryptors.

The following URLs and IP addresses should be accessible for the sensors/decryptors to connect:

https://i.nuos.io/api/1.1/wf
https://rvs.nuos.io
13.248.140.181
52.183.93.152

Note: To set up AWS VPC traffic mirroring sessions please review . Additional information is available on the .

3

Nubeva TLS Documentation, Release 1.2

4 Chapter 1. Nubeva TLS Overview

CHAPTER 2

Getting Started

2.1 First Time Users

To get started with Nubeva TLS Visibility Solution, start by creating an account and log in on the Nubeva Manager
(console):

1. Navigate to and select ‘Login’ from the main menu.

2. First-time users will be prompted to create an account. Go ahead and use one of the OAuth partners to log in.

5

Nubeva TLS Documentation, Release 1.2

Note: Nubeva only supports OAUTH logins through Google, Microsoft, and Amazon. We do not ask you for a
password, and do not store your passwords or keys.

3. When you log in to Nubeva Manager for the first time, you will see a helper block which provides useful links to
on-line guides and videos. You can revisit this information on the Help page. You are automatically subscribed
to a free trial for 30 days. You may upgrade your subscription at any time before the end of the trial by clicking
the upgrade button in the main menu bar, or by selecting the Subscription option from the account menu
as shown in the figure below:

When you log in a ‘Default Project’ is created automatically for you. As part of creating a project, Nubeva Manager
also creates a DynamoDB table to store session keys which the Nubeva Sensors extract.

Tip: You should replaced the default DynamoDB table with one in your own account when going to production.
Instructions are provided later in this section.

6 Chapter 2. Getting Started

CHAPTER 3

TLS Key Extraction

Extracting keys and decrypting workloads requires five steps:

1. Installing Nubeva Sensors

2. Creating Source Groups

3. Installing Decryptor Engines

4. Configuring Cloud Tools

5. Mirroing traffic

The visual tiggers for each step are marked in the figure below:

3.1 Installing Nubeva Sensors

As shown in figure 1 in the previous section Nubeva Sensors mirror traffic as well as extract session keys from
encrypted traffic. Nubeva Sensors are available for Linux and MS Windows.

7

Nubeva TLS Documentation, Release 1.2

1. Linux sensors are available as Docker containers as well as a standalone installation. You can skip this step if
your instance is already running the required version of Docker. If you need to install docker please refer to for
instructions.

2. Click on the top icon in the left corner of the Source Group box.

3. This will pop up a box similar to the figure below. Select ‘Container Sensor’ from the drop-down menu. Click
the button on the right to copy the installation command.

4. Paste this command into a command shell on the cloud instance. The sensor container will automatically
download and install.

5. About 10-20 seconds after installation, the Active sensors counter in the Source Groups box will
increase by 1 indicating that the sensor is active.

7. To launch a native Linux installer select the options shown in the figure below:

8 Chapter 3. TLS Key Extraction

Nubeva TLS Documentation, Release 1.2

7. To launch a Windows sensor, select “Windows Sensor” from the drop-down.

8. Paste this command into a command shell on the cloud instance. The sensor installer will automatically down-
load and install from Docker Hub.

Note: The last command is:

& "$DownloadDir\installer.exe" NUTOKEN_USERINPUT=$NubevaTok API_URL_ARG=$
→˓{InstallerArg} /q;

To enable detailed logging replace the last command with:

3.1. Installing Nubeva Sensors 9

Nubeva TLS Documentation, Release 1.2

& "$DownloadDir\installer.exe" NUTOKEN_USERINPUT=$NubevaTok API_URL_ARG=$
→˓{InstallerArg} /q /L*V "$DownloadDir\installer.log";
"Debugging logs are in: '$DownloadDir\installer.log'

To uninstall a Windows sensor run:

wmic product where "description='Nubeva Sensor' “ uninstall

Tip:

Nubeva sensors can be run as daemonsets in Kubernetes clusters. Nubeva sensors require Kubernetes
versions 1.11 or greater. If you would like to extract keys from nodes running in a Kubernetes cluster
please do the following:

1. Download https://nubevalabs.s3.amazonaws.com/nuAgentDaemonSet.yaml

2. Edit the file and replace the value of the nutoken placeholder with the value that is used in your project.
This is the value of the nutoken parameter in the sensor-launch dialogs depicted above.

3. Run

kubectl apply -f nuAgentDaemonSet.yaml

The next step is to configure source groups.

3.2 Creating Source Groups

Source groups instruct sensors to extract keys. Sensors are grouped based on their metadata and custom tags. A sensor
must be included in a source group in order to extract keys. The following links provide additional information: , , , .

As new sensors with matching meta-data and/or custom tags appear, they are automatically added to the source group.
This is a powerful adaptation to the elastic nature of cloud environments. For instance, if you routinely spin up/down
instances with web scaling events, selecting filters such as AMI type, VPC, subnet, or custom tag values, will ensure
that any new sensors that appear will be immediately added to the source groups and start extracting keys.

Note: For additional security and scaling, Nubeva supports Amazon DynamoDB as a Private KeyDB. Sensors store
session keys in a private DynamoDB table in your account. Other cloud DBs such as Azure Cosmos DB or Google
Cloud Data-store are on the road-map. Please contact us if you are interested in those platforms.

: All communication of keys and associated meta-data is encrypted both in transit and at rest. The session keys for
the sensor to KeyDB communication is NEVER saved. All user data stored in Amazon DynamoDB is fully encrypted
at rest. DynamoDB encryption at rest provides enhanced security by encrypting all data at rest using encryption
keys stored in AWS Key Management Service (AWS KMS). Nubeva has no access to this Private KeyDB running on
Amazon DynamoDB.

: For additional security Nubeva suggests that you use VPC endpoints for all connectivity to a Private KeyDB running
on Amazon DynamoDB.. When you create a VPC endpoint for DynamoDB, any requests to a DynamoDB endpoint
within the Region (for example, dynamodb.us-west-2.amazonaws.com) are routed to a private DynamoDB endpoint
within the Amazon network. You don’t need to modify your applications running on EC2 instances in your VPC. The
endpoint name remains the same, but the route to DynamoDB stays entirely within the Amazon network, and does not
access the public Internet.

10 Chapter 3. TLS Key Extraction

https://nubevalabs.s3.amazonaws.com/nuAgentDaemonSet.yaml

Nubeva TLS Documentation, Release 1.2

These are the steps to create a source group:

1. Click on the lower icon at the top right of the “Source Group” box. This will load the Source Group editing
window.

2. Name the new source group.

3. Click on the Filter Type (leftmost) drop down to select either ‘Metadata’ or ‘Custom Tags’.

Note: On AWS permission has to be given to describe all instances because the scope of DescribeInstances cannot
be limited to a single instance. Creating an AWS IAM role for custom tag support

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"ec2:DescribeInstances"
],
"Resource": "*"

}
]

}

4. Click on the Metadata Category in the “Source Inclusion Policy” and choose something. Select the condition
and select the values. Then click the ‘+’ button.

3.2. Creating Source Groups 11

Nubeva TLS Documentation, Release 1.2

5. You can add multiple conditions.

6. Select save. This will return you to the dashboard.

Tip: By default key extraction is turned on. The check box in the upper right corner allows you to turn key discovery
on/off for the sensors included in the source group.

3.3 Launching Decryptors

1. Docker is a prerequisite to running containers. You can skip this step If your instance is already running the
required version of Docker. If you need to install Docker please refer to for instructions.

2. Click on the “Lock” (top) icon on the top left of the Destination Group box.

3. This will display the popup depicted in figure below. Click the button on the right to copy the installation
command.

4. Paste this command into a command shell on the decryptor cloud instance. The decryptor container will auto-
matically download and install.

5. About 10-20 seconds after installation, the decryptor counter in the Destination Groups box will increase by 1
indicating that the decryptor is active.

6. If you would like to launch a cloud security tool to process the decrypted packets, please refer to the Tool
Launcher section.

12 Chapter 3. TLS Key Extraction

Nubeva TLS Documentation, Release 1.2

Note: Refer to Deploying Security Tools for comprehensive instructions for launching security tools based on the .

The final step is to mirror traffic to your decryptor. This can be done by using AWS VPC Traffic Mirrors or by defining
destinations and connections between source groups and destinations.

3.3. Launching Decryptors 13

Nubeva TLS Documentation, Release 1.2

14 Chapter 3. TLS Key Extraction

CHAPTER 4

Key Extraction QuickStart

To familiarize yourself with basic key extraction you can run a Simple Sensor configuration. This configuration
runs a single sensor instance extracting keys to a local file on the same instance where the sensor is running.

You can launch a simple sensor configuration by adding a paramters to a Container Sensor’s launch command. A full
command example is listed below.

docker run -v /:/host -v /var/run/docker.sock:/var/run/docker.sock --cap-add NET_
→˓ADMIN --cap-add SYS_ADMIN --cap-add SYS_RESOURCE --cap-add SYS_PTRACE --name nubeva-
→˓agent -d --restart=always --net=host --pid host nubeva/nuagent --accept-eula --
→˓contained on --nutoken <Nubeva-Token> --sslcredobj
→˓eyJ0eXBlIjoibGNsIiwicmVnaW9uIjoiL2hvc3QvdG1wLyIsImRvbWFpbiI6ImtleXMubG9nIn0K

The Nubeva-Token will be included in the command when you copy from the sensor-launch dialog (Installing
Nubeva Sensors). The last parameter which is added to the launch command is listed below. This parameter instructs
the sensor to store keys in /tmp/keys.log.

--sslcredobj
→˓eyJ0eXBlIjoibGNsIiwicmVnaW9uIjoiL2hvc3QvdG1wLyIsImRvbWFpbiI6ImtleXMubG9nIn0K

You can install nubevalab/tlsgenertor which is a standard traffic generator container. The command to launch the
generator is:

15

Nubeva TLS Documentation, Release 1.2

docker run -dti nubevalab/tlsgenerator

In addition you may install a dockerized version of Wireshark that is accessible using HTTPS. To deploy the container
run:

docker run -v /tmp:/keys -p 14500:14500 --restart unless-stopped -dti --cap-add NET_
→˓ADMIN --net=host --name wireshark ffeldhaus/wireshark

The directory of the keys file is mapped to the /keys directory on the Wireshark container, so the key file will be
/keys/keys.log.

Note: The user-name and password for accessing Wireshark are wireshark

You can deploy all three elements using a cloud formation template stored at . To launch the template you need a
VPC and a Nubeva Token. The CloudFormation template installs all three containers and sets up a cron job to run a
generator container every minute. The figure below depicts the containers running.

16 Chapter 4. Key Extraction QuickStart

CHAPTER 5

Projects and Key DBs

Projects are groupings of key extraction work-flows. A sensor can belong to only one project. Projects allow you to
easily manage deployments as they grow. You can add/remove/select projects from the ‘Project’ option in the main
menu.

17

Nubeva TLS Documentation, Release 1.2

5.1 Set up a Private Key DB

A private key DB is automatically configured for each of your projects in a DynammoDB table hosted by Nubeva.

Tip: Nubeva TLS supports AWS, Azure and GCP. The key database is a DynamoDB table in AWS.

The project properties dialog indicates which DynamoDB table is being used. The figure shows that the table is in
Nubeva’s account. To replace the default table with a table in your own account, click the Create Private Key
DB button.

This step is not required for POC but recommended when you go to production.

Select the region and click Launch DB. This will launch a Cloud Formation template. The template creates IAM
resources for writing and reading from the Key DB. Acknowledge that you allow these roles to be created:

When the template is done select the Outputs tab and click the URL in the field SendtoNubeva:

This operation navigates back to the home page of your current project and registers the encrypted credentials.

Note: If you delete the private Key DB, you can always create another. If you delete a private Key DB and do not
create another, then sensors will no longer extract session keys.

18 Chapter 5. Projects and Key DBs

Nubeva TLS Documentation, Release 1.2

5.1. Set up a Private Key DB 19

Nubeva TLS Documentation, Release 1.2

20 Chapter 5. Projects and Key DBs

CHAPTER 6

Set up a Fast Key DB

It is possible to launch sensors and decryptors with a Fast Key DB configuration. The configuration is depicted in the
figure below. The Fast Key DB service runs on an instance you designate.

Sensors configured to use Fast Key DB send keys using DTLS to a defined destination. Keys are sent within 200
microseconds of generation. Fast Key DB includes two required components, sensor and Key-Depot.

If you are deploying via the CloudFormation template, a VPC and a Nubeva Token are required. 2 EC2 instances are
used in the build. The Source has 2 docker containers and the Destination/Key DB has 1 container.

The easiest way to deploy Simple DB is with a CloudFormation template stored at https://nubevalabs.s3.amazonaws.
com/nubeva-fastkeydb.template.yaml. The source can be found at https://github.com/nubevalabs/templates.

To launch the template you need a VPC and a Nubeva Token. The CloudFormation template runs two EC2 instances.
The source instance runs a sensor and traffic generator. The destination instance runs a Fast Key DB Container.

You can launch a subset of the containers yourself. You will need at least a sensor container on the source, and a
Simple Key DB on the destination. The following sections describe how to launch each of the containers.

6.1 Sensor Container

A sensor container is required on the source instance. This is a standard sensor that uses a special parameter specifying
that it should only write keys to key.nubedge.com which must resolve (usually with /etc/hosts) to the destination
instance.

21

https://nubevalabs.s3.amazonaws.com/nubeva-fastkeydb.template.yaml
https://nubevalabs.s3.amazonaws.com/nubeva-fastkeydb.template.yaml
https://github.com/nubevalabs/templates

Nubeva TLS Documentation, Release 1.2

docker run -v /:/host -v /var/run/docker.sock:/var/run/docker.sock --add-host key.
→˓nubedge.com:<<KeyDB IP address>> --cap-add NET_ADMIN --cap-add SYS_ADMIN --cap-add
→˓SYS_RESOURCE --cap-add SYS_PTRACE --name nubeva-agent -d --restart=always --
→˓net=host --pid host nubeva/nuagent --accept-eula --contained on --nutoken <<your_
→˓token>> --sslcredobj
→˓eyJ0eXBlIjoiZHRscyIsImRvbWFpbiI6ImtleS5udWJlZGdlLmNvbTo0NDMzIiwicmVnaW9uIjoidGVzdCIsImFrIjoidXNlciIsInNrIjoicGFzc3dvcmQifQo=

Note that you need to specify the IP address of key.nubedge.com. You will also need to modify your /etc/hosts
file.

The last parameter in the command instructs the sensor to send its keys to a Fast Key DB.

--sslcredobj
→˓eyJ0eXBlIjoiZHRscyIsImRvbWFpbiI6ImtleS5udWJlZGdlLmNvbTo0NDMzIiwicmVnaW9uIjoidGVzdCIsImFrIjoidXNlciIsInNrIjoicGFzc3dvcmQifQo=

This string is a base64 encoded json object that can be generated using the following command:

echo '{"type":"dtls","domain":"key.nubedge.com:4433","region":"test","ak":"user","sk":
→˓"password"}' | base64

Type “dtls” value means a Fast Key DB, ‘domain’ is the destination host name, ‘region’ is ‘test’, user, and password
fields can be left the same. They are not used but they are required. You can change the domain to anything however
you MUST have a valid cert. This docker container contains a valid cert for key.nubedge.com.

To run a Windows sensor that sends keys to key.nubedge.com run the following PowerShell command (make sure
to replace the value of the Nubeva token with your own):

$DownloadDir = $env:TEMP; $BaseUrl="https://i.nuos.io/";
$InstallerArg="-baseurl ${BaseUrl}api/1.1/wf/ -sslcredobj
→˓eyJ0eXBlIjoiZHRscyIsImRvbWFpbiI6ImtleS5udWJlZGdlLmNvbTo0NDMzIiwicmVnaW9uIjoidGVzdCIsImFrIjoidXNlciIsInNrIjoicGFzc3dvcmQifQo=
→˓";
$NubevaTok="<Your Nubeva Token>";
[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12
Invoke-WebRequest -Uri "${BaseUrl}NubevaSensor.latest.setup.exe" -OutFile "
→˓$DownloadDir\installer.exe";
& "$DownloadDir\installer.exe" NUTOKEN_USERINPUT=$NubevaTok API_URL_ARG=$
→˓{InstallerArg} /q;

6.2 Traffic Generator - Optional

You can add a traffic generator container to the source, however this is not required. This is Nubeva’s standard traffic
generator container. A container runs for approximately 60-120 seconds. You may use a cron job to run a container
every minute. The actual docker command to run this generator once is:

docker run -dti nubevalab/tlsgenerator

6.3 Fast Key DB

fastkeydb.py is a python script that uses Flask to simulate Nubeva’s Fast Key DB REST API. The script uses DTLS as
a method to receive keys quickly. Source is located in same templates repo noted above.

22 Chapter 6. Set up a Fast Key DB

https://nubevalabs.s3.amazonaws.com/fastkeydb/fastkeydb.py

Nubeva TLS Documentation, Release 1.2

6.3.1 Linux Fast Key DB

You can deploy a Fast Key DB container with the following command:

docker run -p 4433:4433/TCP -p 4433:4433/UDP -dti --name fastkeydb nubevalab/fastkeydb

You can see keys by running:

curl https://key.nubedge.com:4433/dumpkeys

6.3.2 Windows Fast Key DB

Download fastkeydb.py. You will need to receive the necessary cert files nubedge.ca, nubedge.key and
nubedge.pem from Nubeva. The Python script requires the --certs-path parameter to specify the directory
path for the cert files e.g. C:\Nubeva\. Note that the last backslash is required.

Edit C:\Windows\System32\drivers\etc\hosts file and add an entry for key.nubedge.com:

127.0.0.1 key.nubedge.com

Install necessary Python libraries:

pip install flask
pip install dtls

Or

python -m pip install flask
python -m pip install dtls

Run the script

python fastkeydb.py --nssfile C:\<path to key log>\keys.log --certs-path C:\<path to
→˓certs>\

You can check that Fast Key DB is receiving keys accessing the URL below from a browser:

https://key.nubedge.com:4433/dumpkeys

6.3. Fast Key DB 23

https://nubevalabs.s3.amazonaws.com/fastkeydb/fastkeydb.py

Nubeva TLS Documentation, Release 1.2

24 Chapter 6. Set up a Fast Key DB

CHAPTER 7

TLS Key Record Formats

Sensors use a REST API to send keys to key depots. The rest API uses a JSON object. The object is a key:value pair,
where the key is a ‘client random’ and the value is a set of key fields and a meta-data structure. Meta-data data is not
required for decryption.

The structure is the same for TLS 1.2 and TLS 1.3 keys. Fields are populated based on the TLS protocol type. The
names of the fields match the specification. The JSON object uses the following abbreviations:

• MS: master key - this field is populated when the type is “TLS 1.2”

• CETS: client early traffic secret - TLS 1.3

• CHTS: client handshake traffic secret - TLS 1.3

• SHTS: server handshake traffic secret - TLS 1.3

• CTS0: client traffic secret 0 - TLS 1.3

• STS0: server traffic secret 0 - TLS 1.3

• XS: exported secret - TLS 1.3

The figure below depicts a TLS 1.2 key object

{
"07ad5a5d9745c73e599e2147c7bb471249ed427a209dae6b77a807e898b9e5ec": {

"CETS": "",
"CHTS": "",
"CR": "07ad5a5d9745c73e599e2147c7bb471249ed427a209dae6b77a807e898b9e5ec",
"CTS0": "",
"LastUsed": "2020-06-10T23:59:58",
"MD": {

"command": "curl",
"hostname": "ip-172-31-5-150.ec2.internal",
"instance": "i-05f1e99c1cd9e3b28",
"lib": "osl",
"pid": 22909

},

(continues on next page)

25

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

"MK":
→˓"8b48f8a3f80ee7bbf26166d20913ce5ff068924d23b79199adc1babc4385c084c9cccc143ffa19963db60e010157fe33
→˓",
"SHTS": "",
"STS0": "",
"Type": "1.2",
"XS": ""

}
}

The following figure depicts a TLS 1.3 key object

{
"01fc0baa6eca082096d69f047e232ed762ba317b1e7392178ca8c2579c73c464": {
"CETS": "",
"CHTS":
→˓"34110bb15d8fad38f0e2cda16cebe43e5f30cf60066ab04bf6cabf9553b175c6e2d1a3005b1d1c5527d9d1ad9a750679
→˓",
"CR": "01fc0baa6eca082096d69f047e232ed762ba317b1e7392178ca8c2579c73c464",
"CTS0":
→˓"1bfa4c5d2351a746fb4472f5ca0276c81864ac613f994b06570431c1751f3aa88a4a67a66375a403dc9792e913b830b8
→˓",
"LastUsed": "2020-06-11T00:01:43",
"MD": {"command": "curl",

"hostname": "ip-172-31-5-150.ec2.internal",
"instance": "i-05f1e99c1cd9e3b28",
"lib": "osl",
"pid": 23311},

"MK": "",
"SHTS":
→˓"a86ae64b0fe1bd9e065125768251fd279089d0e544e2200f2d3df87edc2692d45befce649fac006d0fab153f2365a41a
→˓",
"STS0":
→˓"4c84bdae94562490dc2371cf32a48489fe03e89f7c464efae93afdc1df522d774b875ffabf95ce8e35cdf9b89773855a
→˓",
"Type": "1.3",
"XS":
→˓"7dce5eec25e6e48a4f0a6bad9ece783fe7ef208d2508a1112b9a074d000e8cc9425ff2d59ac99b33715c2bdf98547510
→˓"
}

}

Two communication channels are used when sensors send keys to a DTLS key target. A control channel uses a REST
API to send keys. A low latency protocol uses DTLS to send a binary representation of key records. The structure of
the binary format is the following:

• Byte 0: Version: a running counter of Nubeva’s low latency protocol version. The current version can be 0x1.
This is the same number returned with the bearer token.

• Byte 1: Type indicates what function is requested. 0xC8 (200) = putkey

• Bytes 2-3: Protocol Version: 0303 = TLS 1.2, 0304 = TLS 1.3

• Bytes 4-5: Length: indicates the length of the keys + the length of the bearer token (64 + 32 + 48 + 384 = 528).

• Bytes 6-69: Bearer-token (64 bytes)

• Bytes 70-101: Client random (32 bytes)

• Bytes 102-149: Master key (48 bytes). 0’s if ‘protocol version’ is 0304

26 Chapter 7. TLS Key Record Formats

Nubeva TLS Documentation, Release 1.2

• Bytes 150-213: CETS (client early traffic secret) 0’s if ‘protocol version’ is 0303

• Bytes 214-277: CHTS (client handshake traffic secret) 0’s if ‘protocol version’ is 0303

• Bytes 278-341: SHTS (server handshake traffic secret) 0’s if ‘protocol version’ is 0303

• Bytes 342-405: CTSZ (client traffic secret 0) 0’s if ‘protocol version’ is 0303

• Bytes 406-469: STSZ (server traffic secret 0) 0’s if ‘protocol version’ is 0303

• Bytes 470-533: XS (exported secret) 0’s if ‘protocol version’ is 0303

Sample code that shows how to receive REST API and UDP messages for storing keys is available at https:
//nubevalabs.s3.amazonaws.com/dtlskeydb/dtlskeydb.py. Instructions to run the script are provided in the DTLS Key
DB section at the bottom of the previous page.

Note: Since the client random value is used as the unique key for looking up session master keys, it is possible to
store the same master key more than once. This assures that TLS session renewals are supported as well.

27

https://nubevalabs.s3.amazonaws.com/dtlskeydb/dtlskeydb.py
https://nubevalabs.s3.amazonaws.com/dtlskeydb/dtlskeydb.py

Nubeva TLS Documentation, Release 1.2

28 Chapter 7. TLS Key Record Formats

CHAPTER 8

Modifying Project Elements

You can modify or delete any element by clicking an element and selecting an option from the pop-up menu:

1. Source Groups:

View/Modify Source Groups

Select Group Properties to view and modify a source group, Delete Group to remove a source group and
its connections.

2. Destinations:

3. Connections:

29

Nubeva TLS Documentation, Release 1.2

View/Modify Connections

Select Connection Properties to view and modify a connection, Delete Connection to remove it.

30 Chapter 8. Modifying Project Elements

CHAPTER 9

Packet Mirroring

Note: You can set up traffic mirroring without running Nubeva Decryptors. The traffic reaching the target security
tool will be encrypted. If you are using AWS VPC Traffic Mirrors you can skip to Decrypting AWS VPC Traffic
Mirroring.

9.1 Creating Destinations

Destinations are define the IP addresses of instances running Cloud Tools. There are many packet inspection
and processing tools in the open source community as well as many vendor offerings. Before we create a destination
in the UI, we need to have an actual tool.

These are the steps to create a destination that points to a tool:

1. Click on the “Marker” (bottom) icon on the “Destinations” box.

2. The next screen allows you to define the properties of this new destination group.

31

Nubeva TLS Documentation, Release 1.2

3. Name the destination.

4. Choose between a single tool or a set of tools that you want to load share against. For a load share environment,
insert multiple comma-separated IP addresses into the field and the traffic will be load-shared among the defined
tools.

Note: If you need more advanced load-balancing, you can use the front-end IP address of a cloud load balancer as the
IP and configure this LB via the cloud portals. To enable VXLAN traffic to your destination inbound traffic should be
enabled on UDP port 4789.

One of the simplest tools you can use is tcpdump. This is a simple Unix command that takes all data received on an
interface and displays it on the screen. You also use it to write this traffic to a file.

Create a Unix instance in your cloud provider. Connect to it and issue the command:

tcpdump -na -i eth0 port 4789

This will start a tcpdump session which will display all mirrored traffic on your default interface but it will not show
your SSH session traffic.

5. Click ‘save’ when finished.

9.2 Creating Connections

At this point, you can have one or more source groups and one or more tool destinations.

32 Chapter 9. Packet Mirroring

Nubeva TLS Documentation, Release 1.2

1. To connect a source group to a destination/tool, simply click on the source and drag the connection line to the
required destination and drop it. This will popup the following connection profile window, with the ‘Source
Group’ and ‘Destination Group’ values preset.

2. You can also click on the the icon in top left corner of on the Connections box and it will take you to the same
screen, but you will have to choose the Source Group and Destination Group from their drop-down.

9.2. Creating Connections 33

Nubeva TLS Documentation, Release 1.2

3. You can use VXLAN tunnel encapsulation to send traffic to the destination. The VNI ID should be a unique
number for the source group.

4. Berkeley Packet Filter (BPF) is where you enter the data filters you want to apply to this connection.

5. Click save to return to the dashboard. You will see mirroring indications in the diagram as well as the ‘through-
put’ value in the connections box:

If you generate encrypted traffic on your source instance:

run some https traffic on the client
curl https://example.com

You can see the decrypted traffic on your destination by issuing the command on the decryptor instance:

tcpdump -Ani nurx0 port 80

9.3 Decrypting AWS VPC Traffic Mirroring

To decrypt Amazon VPC traffic mirroring follow the first three steps described above:

34 Chapter 9. Packet Mirroring

Nubeva TLS Documentation, Release 1.2

1. Installing Nubeva Sensors

2. Creating Source Groups

3. Launching Decryptors

Since the AWS VPC traffic mirrors are generating the packet flow, there is no need to create connections. Instead, setup
an AWS VPC traffic mirroring session between your source where the nubeva sensor is running, and the destination
where you installed the decryptor engine.

To set up a traffic mirroring session please review . Additional information is available on the .

9.4 Monitoring Sensors and Decryptors

You can monitor the status of your Sensors and Decryptors on the sensors and decryptors pages respectively.
The figure below depicts the layout of the sensors page showing one active sensor:

Active Sensors

Active Decryptors

Both screens allow you to set the ‘sensitivity threshold’ for determining whether a sensor or a decryptor is ‘active’.
Active states are define by the time since a sensor/decryptor last ‘phoned home’. The two figures below show how the
same sensor is considered inactive with a threshold set to 6 hours and active when the threshold is set to 1 day.

Sensor active during the past 24 hours

Sensor inactive in the past six hours

9.4. Monitoring Sensors and Decryptors 35

Nubeva TLS Documentation, Release 1.2

36 Chapter 9. Packet Mirroring

CHAPTER 10

TLS API

Please follow the link to Nubeva’s TLS

37

Nubeva TLS Documentation, Release 1.2

38 Chapter 10. TLS API

CHAPTER 11

Deploying Security Tools

This guide shows how to add five open-source security & networking tools to your AWS Cloud environment. It deploys
Moloch, ntopng, Suricata, Wireshark, and Zeek that provide advanced security visibility in your cloud. These tools are
integrated with the Nubeva TLS Decryption solution with provides deeper visibility into all TLS traffic, including TLS
1.2 w/PFS and TLS 1.3. You can choose to create a new VPC environment for your open-source tools or deploy them
into your existing VPC environment. After you deploy the Quick Start, you can add other AWS services, infrastructure
components, and software layers to complete your test.

11.1 Tool Launcher

Please follow the steps below to launch cloud tools.

1. Click on the “Wrench” (middle) icon on the top left of the Destination Group box. This will display the popup
depicted in the figure below.

39

Nubeva TLS Documentation, Release 1.2

40 Chapter 11. Deploying Security Tools

Nubeva TLS Documentation, Release 1.2

2. Select the region and the VPC options.

3. Click the copy button to copy the Nubeva Token to the clipboard. This token is required by the cloud
formation template that orchestrates tool launches.

4. Click the Launch Tool button. This loads a cloud formation template that allows you to select which tools
you would like to launch.

The following sections describe each tool deployment is more detail.

11.2 Moloch

Moloch is a large scale, open-source, indexed packet capture and search system. Moloch augments your current
security infrastructure to store and index network traffic in standard PCAP format, providing fast, indexed access. An
intuitive and simple web interface is provided for PCAP browsing, searching, and exporting. Moloch exposes APIs
which allow for PCAP data and JSON formatted session data to be downloaded and consumed directly. Moloch stores
and exports all packets in standard PCAP format, allowing you to also use your favorite PCAP ingesting tools such as
wireshark, during your analysis workflow.

For additional information please refer to as well as the .

11.2.1 Moloch Architecture Details

As part of the Nubeva Tools automated deployment, Moloch is deployed using an . The figure below depicts the
complete highly scalable Moloch architecture.

11.2. Moloch 41

Nubeva TLS Documentation, Release 1.2

• Moloch EC2 instances are built from code, look at the for more details.

• Each Moloch EC2 instance contains an active Moloch Viewer and Moloch Capture

• Moloch is installed at /data/moloch

• All Moloch components start automatically with the /data/moloch/start_moloch.sh script.

• Moloch logs are located at /data/moloch/logs

• Moloch will be configured to use the username & password which were defined as part of the CFT creation.

• All Moloch EC2 instances use the AWS ElasticSearch service, moloch-es.

– VPC access w/security group restrictions (see below for more info)

– Uses same machine type for ES cluster nodes

– Uses same node count for ES cluster nodes

– Uses port 80/http for all ES communication (can be changed after install to 443/https)

• More Moloch details are in the config file /data/moloch/etc/config.ini.

42 Chapter 11. Deploying Security Tools

Nubeva TLS Documentation, Release 1.2

• Moloch only monitors nurx0

• Network Elastic Load Balancers front-end all communications to the Moloch instances

– UDP port 4789 is forwarded to all targets for Amazon VPC traffic mirrors

– TCP port 8005 is forwarded to all targets for Moloch Viewer

11.2.2 Operating Moloch

• Connect to the MolochELB on port 8005 using HTTP. Login in with the tooladmin username & password.

• Point all VPC traffic mirroring sessions at the Traffic Mirror Target (TMT) for the MolochELB. This will ensure
that the mirrors are sent to any active Moloch capture point. This leverages UDP load balancing, so flows will
stick on the Moloch capture engines.

• All Moloch instances will then store packet information in the AWS ElasticSearch Service that is created during
the CFT process.

• The final traffic PCAPs are stored in the S3 bucket created during the CFT process.

• To view the moloch data, use a web browser to connect to the load balancer URL on port 8005.

11.2.3 Moloch Security Details

• Each Moloch EC2 instance allows TCP port 22 (ssh) and 8005 (Moloch viewer using http) from the Remote
Access CIDR specified at the CFT launch.

• Each Moloch EC2 instance allows UDP port 4789 (vxlan) from any source in the VPC.

• Each Moloch EC2 instance has unlimited outbound access

• The AWS ElasticSearch service allow TCP port 80 (http) from any source in the VPC.

11.3 ntopng

ntopng is a free and open-source packet analyzer. It is used for network troubleshooting, analysis, software and
communications protocol development, and education. For more details refer to .

11.3.1 ntopng Architecture Details

As part of the Nubeva Tools automated deployment, ntopng is deployed using an . The figure below depicts the
complete highly scalable Suricata architecture.

11.3. ntopng 43

Nubeva TLS Documentation, Release 1.2

• ntopng instances are built from code, look at the for more details.

• ntopng is installed using yum and uses all the defaults

• ntopng only monitors nurx0.

• Any browser can be used to connect to the ntopng console on port 3000 if they are part of the Remote Access
CIDR. .

• Network Elastic Load Balancers front-end all communications to the ntopng instances

– UDP port 4789 is forwarded to all targets for Amazon VPC traffic mirrors

– TCP port 3000 is forwarded to all targets for incoming console connections.

11.3.2 Operating ntopng

• Connect to the NtopELB on port 3000 using HTTP. Login in with the default username & password for ntop

• Point all VPC traffic mirroring sessions at the Traffic Mirror Target (TMT) for the ntopELB. This will ensure
that the mirrors are sent to any active ntopng instance. This leverages UDP load balancing, so flows will stick

44 Chapter 11. Deploying Security Tools

Nubeva TLS Documentation, Release 1.2

on the ntopng instance.

• To view the ntopng UI, connect to the load balancer URL on port 3000.

11.3.3 ntopng Security Details

• Each ntopng EC2 instance allows TCP port 22 (ssh) and 3000 (ntopng console using http) from the Remote
Access CIDR specified at the CFT launch.

• Each ntopng EC2 instance allows UDP port 4789 (vxlan) from any source in the VPC.

• Each ntopng EC2 instance has unlimited outbound access

11.4 Suricata

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open-source and
owned by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is
developed by the OISF.

For additional information please refer to as well as the .

11.4.1 Suricata Architecture Details

As part of the Nubeva Tools automated deployment, Suricata is deployed using an . The figure below depicts the
complete highly scalable Suricata architecture.

11.4. Suricata 45

Nubeva TLS Documentation, Release 1.2

• Suricata EC2 instances are built from code, look at the for more details.

• Each Suricata EC2 instance contains an active Suricata worker and Logstash for log storage.

• Suricata is installed via yum with all defaults

• All Suricata components start automatically as a service.

• Suricata logs are located at /var/log/suricata/

• Suricata only monitors nurx0

• All Suricata EC2 instances use the AWS ElasticSearch service, suricata-es.

– VPC access w/security group restrictions (see below for more info)

– Uses same machine type for ES cluster nodes

– Uses same node count for ES cluster nodes

– Uses port 80/http for all ES communication (can be changed after install to 443/https)

• More Suricata details are in the config file /etc/suricata/suricata.yaml

46 Chapter 11. Deploying Security Tools

Nubeva TLS Documentation, Release 1.2

• Suricatas alerts can be viewed through the Kibana UI integrated with the AWS ES service. See the output of the
Suricata CFT for the exact URL.

• Network Elastic Load Balancers front-end all communications to the Suricata instances

– UDP port 4789 is forwarded to all targets for Amazon VPC traffic mirrors

11.4.2 Operating Suricata

• Connect to the Kibana link in the Suricata CFT Output section for access.

• Point all VPC traffic mirroring sessions at the Traffic Mirror Target (TMT) for the SuricataELB. This will ensure
that the mirrors are sent to any active Suricata worker. This leverages UDP load balancing, so flows will stick
on the Suricata workers.

• All Suricata logs are sent to the AWS ElasticSearch Service that is created during the CFT process.

• To view the Suricata data, use a web browser to connect to the Kibana URL specified in the output of the Suricata
CFT.

11.4.3 Suricata Security Details

• Each Suricata EC2 instance allows TCP port 22 (ssh) from the Remote Access CIDR specified at the CFT
launch.

• Each Suricata EC2 instance allows UDP port 4789 (vxlan) from any source in the VPC.

• Each Suricata EC2 instance has unlimited outbound access

• The AWS ElasticSearch service allow TCP port 80 (http) from any source in the VPC and TCP port 443 (https)
from the Remote Access CIDR specified at launch.

11.5 Wireshark

Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting, analysis, software and
communications protocol development, and education. for more information refer to .

11.5.1 Wireshark Architecture Details

As part of the Nubeva Tools automated deployment, Wireshark is deployed using an . The figure below depicts the
complete highly scalable Suricata architecture.

11.5. Wireshark 47

Nubeva TLS Documentation, Release 1.2

• Wireshark instances are built from code, look at the for more details.

• Each Wireshark EC2 instance contains a Wireshark docker container accessed using HTTPS.

• Select the nurx0 interface to see the decapsulated and decrypted packets.

• Network Elastic Load Balancers front-end all communications to the Wireshark instances

• UDP port 4789 is forwarded to all targets for Amazon VPC traffic mirrors

• TCP port 14500 is forwarded to all targets for incoming HTTPS connections.

11.5.2 Operating Wireshark

• Connect to the WiresharkhELB on port 14500 using HTTPS. Login in with the tooladmin username & password.

• Point all VPC traffic mirroring sessions at the Traffic Mirror Target (TMT) for the WiresharkELB. This will
ensure that the mirrors are sent to any active Wireshark instance. This leverages UDP load balancing, so flows
will stick on the Wireshark instance.

48 Chapter 11. Deploying Security Tools

Nubeva TLS Documentation, Release 1.2

• To view the wireshark UI, use any browser to connect to the load balancer URL, located on the console or in the
output of the CFT.

11.5.3 Wireshark Security Details

• Each Wireshark EC2 instance allows TCP port 22 (ssh) and 14500 (HTTPS) from the Remote Access CIDR
specified at the CFT launch.

• Each Wireshark EC2 instance allows UDP port 4789 (vxlan) from any source in the VPC.

• Each Wireshark EC2 instance has unlimited outbound access

11.6 Zeek

Zeek is a powerful network analysis framework that is much different from the typical IDS you may know. While
focusing on network security monitoring, Zeek provides a comprehensive platform for more general network traffic
analysis as well. Well grounded in more than 20 years of research, Zeek has successfully bridged the traditional gap
between academia and operations since its inception. Today, it is relied upon operationally by both major companies
and numerous educational and scientific institutions for securing their cyberinfrastructure.

For additional information please refer to as well as the .

11.6.1 Zeek Architecture Details

As part of the Nubeva Tools automated deployment, Zeek is deployed using an . The figure below depicts the complete
highly scalable Suricata architecture.

11.6. Zeek 49

Nubeva TLS Documentation, Release 1.2

• Zeek EC2 instances are built from code, look at the for more details.

• Each Zeek EC2 instance contains an active Zeek worker and Logstash for log storage.

• Zeek is installed at /opt/zeek

• All Zeek components start automatically with the /opt/zeek/start_zeek.sh script.

• Zeek logs are located at /opt/zeek/logs

• Zeek only monitors nurx0

• All Zeek EC2 instances use the AWS ElasticSearch service, zeek-es.

• VPC access w/security group restrictions (see below for more info)

• Uses same machine type for ES cluster nodes

• Uses same node count for ES cluster nodes

• Uses port 80/http for all ES communication (can be changed after install to 443/https)

50 Chapter 11. Deploying Security Tools

Nubeva TLS Documentation, Release 1.2

• Zeeks alerts can be viewed through the Kibana UI integrated with the AWS ES service. See the output of the
Zeek CFT for the exact URL.

• Network Elastic Load Balancers front-end all communications to the Zeek instances

• UDP port 4789 is forwarded to all targets for Amazon VPC traffic mirrors

11.6.2 Operating Zeek

• Connect to the Kibana link in the Zeek CTF Output section for access.

• Point all VPC traffic mirroring sessions at the Traffic Mirror Target (TMT) for the ZeekELB. This will ensure
that the mirrors are sent to any active Zeek worker. This leverages UDP load balancing, so flows will stick on
the Zeek workers.

• All Zeek logs are sent to the AWS ElasticSearch Service that is created during the CFT process.

• To view the zeek data, use a web browser to connect to the Kibana URL specified in the output of the Zeek
CFT..

11.6.3 Zeek Security Details

• Each Zeek EC2 instance allows TCP port 22 (ssh) from the Remote Access CIDR specified at the CFT launch.

• Each Zeek EC2 instance allows UDP port 4789 (vxlan) from any source in the VPC.

• Each Zeek EC2 instance has unlimited outbound access

• The AWS ElasticSearch service allow TCP port 80 (http) from any source in the VPC and TCP port 443 (https)
from the Remote Access CIDR specified at launch.

11.6. Zeek 51

Nubeva TLS Documentation, Release 1.2

52 Chapter 11. Deploying Security Tools

CHAPTER 12

Help and Support

To report issues or if there is anything else you would like to see in the product, please let us know. Click on the Help
page and fill in the form. That will tell us directly what you think we should do next.

53

Nubeva TLS Documentation, Release 1.2

54 Chapter 12. Help and Support

CHAPTER 13

Frequently Asked Questions

Question: What measures & research has Nubeva undertaken to ensure that your products continue to operate given
the following challenges:

• OS vendor changes

• Compliance issues

• Interaction with AV/Malware/EDR products

• TPM-type solutions

• Protocol updates, changes and additions

13.1 OS Vendor Changes

Today on Microsoft Windows, Nubeva uses ‘hooking’ for Symmetric Key Intercept. That means we act, with permis-
sion, in the user space application process and memory space. So whatever mechanism segmentation functions, OS or
hardware, Nubeva acts from the user-space process perspective to get the memory segment that has the keys.

For almost twenty years, ‘hooking’ has been licensed by hundreds of ISVs, used by nearly every product team at
Microsoft, and is a generally accepted method.

Microsoft Windows is moving towards tracing, having joined Open DTrace. Windows itself had kernel tracing mech-
anisms such as ETW already. But is now choosing to invest further into more advanced tracing methods such as
DTrace. Once tracing mechanisms are widely available in all Windows distributions, Nubeva looks forward to using
tracing instead of hooking.

Nubeva already uses tracing inside the Linux operating system to access process memory. Just like in Windows
hooking, Nubeva accesses the memory just as the process does. The biggest difference with tracing is that the tracing
works directly in the operating system and is first validated as safe, unobtrusive, and not overly complex by the OS
kernel. This method is safer and more performant than hooking. That is why it’s expected that all operating systems
are likely to evolve to support similar systems.

55

Nubeva TLS Documentation, Release 1.2

13.2 Government/Compliance Issues

Nubeva has been classified as EAR99. Software classified as EAR99 does not require any additional licenses for
export. Nubeva Sensors do not participate in encryption processes in any way. Therefore there are no additional
requirements or considerations required for export.

13.3 Interaction with AV/Malware/EDR Products

Nubeva sensors do not trigger an alert from products such as Windows defenders and other AV/Malware/EDR products
in their default form. However, if the products change from their defaults and have all alerts turned on, then some will
detect Nubeva’s hooking. They all have an easy method to add the Nubeva process to the “allowed processes list”. This
requirement goes hand in glove with the concept that Nubeva is a solution the must be explicitly given permissions to
operate by administrators.

13.4 TPM-type solutions

Trusted Platform Modules (TPM) are used to secure long-term asymmetric encryption and authentication secrets,
such as certificates, private keys, and passwords. Microsoft Pluton further secures TPMs to protect the communication
between the TPM and CPU so it cannot be intercepted. Neither TPM nor Pluton affects Nubeva. Nubeva looks for
ephemeral keys from the user space process memory. The Nubeva process does not depend on any asymmetric keys
nor the TPM architecture. By acting exactly as the user process would (DTrace on Linux, hooking in Windows),
Nubeva can access the key from memory exactly as the user process does. The user process ultimately needs to access
the symmetric key given that TLS is an application encryption protocol. Not network layer protocol like IPSEC. So it
must have access to symmetric keys

13.5 Protocol Updates, Changes & Additions

Nubeva operations have a complete set of automated tests to detect new versions of software, protocols, and appli-
cations. As new versions are detected, Nubeva automatically creates new signatures and tests for viability. If key
extraction is successful, then the new signatures are automatically pushed to the master repo as well as to all part-
ners. If key extraction is not successful, then the Nubeva R&D team manually creates the new signatures and extends
the testing process. The automated signature creation takes 60-90 minutes to complete and if manual intervention is
required, another 2-4 hours is required on average for a new signature.

For applications and libraries that we have source code access to, for instance, open-source, it generally takes us a
day or two to apply our intellectual property to extract the keys. Nubeva also tests the preview version of software to
ensure we can support them at launch.

56 Chapter 13. Frequently Asked Questions

CHAPTER 14

Installing Docker

For genneral information about docker please visit

Key Agents require version 18.09 of Docker which might not be the default version in your cloud. The instructions
below show how to install versions of docker which our agents support.

14.1 Ubuntu 18.04

apt update && apt install -y docker.io

14.2 AWS Linux

AWS Linux AMI version 1 cannot install 18.09 the following commands will install 18.06.1-ce which works correctly.

On a completely new instance:

Amazon Linux AMI

sudo yum update -y
sudo yum upgrade
sudo yum install -y docker
sudo usermod -aG docker $USER
exit
ssh back to instance
sudo service docker start

57

Nubeva TLS Documentation, Release 1.2

14.3 AWS Linux 2

On a completely new instance:

Amazon Linux 2 AMI (HVM), SSD Volume Type
amzn2-ami-hvm-2.0.20190508-x86_64-gp2 (ami-0cb72367e98845d43)

sudo yum update -y
sudo amazon-linux-extras install docker
sudo service docker start
sudo usermod -a -G docker ec2-user
exit

14.4 Cent OS 7

yum install -y docker
yum remove -y docker docker-common docker-selinux docker-engine
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum install -y docker-ce
systemctl enable docker.service
systemctl start docker.service

14.5 Red Hat Enterprise Linux 7.5 (RHEL)

yum update -y
yum-config-manager --enable rhui-REGION-rhel-server-extras
yum install -y container-selinux yum-utils
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum install -y docker-ce
systemctl enable docker.service
systemctl start docker.service

14.6 Cloud Provider Instructions

Note: The cloud provider default version of Docker might not be compatible with our agents

These are the links to install cloud provider versions of docker on AWS and Azure instances.

58 Chapter 14. Installing Docker

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.microsoft.com/en-us/azure/docker/

CHAPTER 15

Ciphers Supported

"TLSv1.3"
TLS_AES_256_GCM_SHA384 Kx=any Au=Any Enc=AESGCM(256) Mac=AEAD
TLS_CHACHA20_POLY1305_SHA256 Kx=any Au=Any Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
TLS_AES_128_GCM_SHA256 Kx=Any Au=Any Enc=AESGCM(128) Mac=AEAD

"TLSv1.2"
ECDHE-ECDSA-AES256-GCM-SHA384 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-GCM-SHA384 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-GCM-SHA384 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-CHACHA20-POLY1305 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
ECDHE-RSA-CHACHA20-POLY1305 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
DHE-RSA-CHACHA20-POLY1305 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
ECDHE-ECDSA-AES128-GCM-SHA256 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-GCM-SHA256 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-GCM-SHA256 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD
ECDHE-ECDSA-AES256-SHA384 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES256-SHA384 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
DHE-RSA-AES256-SHA256 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256
ECDHE-ECDSA-AES128-SHA256 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256
ECDHE-RSA-AES128-SHA256 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256
DHE-RSA-AES128-SHA256 Kx=DH Au=RSA Enc=AES(128) Mac=SHA256
AES256-GCM-SHA384 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD
AES128-GCM-SHA256 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD
AES256-SHA256 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256
AES128-SHA256 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256

ECDHE-PSK-CHACHA20-POLY1305 Kx=ECDHEPSK Au=PSK Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
RSA-PSK-AES256-GCM-SHA384 Kx=RSAPSK Au=RSA Enc=AESGCM(256) Mac=AEAD
DHE-PSK-AES256-GCM-SHA384 Kx=DHEPSK Au=PSK Enc=AESGCM(256) Mac=AEAD

(continues on next page)

59

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

RSA-PSK-CHACHA20-POLY1305 Kx=RSAPSK Au=RSA Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
DHE-PSK-CHACHA20-POLY1305 Kx=DHEPSK Au=PSK Enc=CHACHA20/POLY1305(256)
→˓Mac=AEAD
RSA-PSK-AES128-GCM-SHA256 Kx=RSAPSK Au=RSA Enc=AESGCM(128) Mac=AEAD
DHE-PSK-AES128-GCM-SHA256 Kx=DHEPSK Au=PSK Enc=AESGCM(128) Mac=AEAD

"TLSv1 "
ECDHE-ECDSA-AES256-SHA Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1
ECDHE-RSA-AES256-SHA Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
ECDHE-ECDSA-AES128-SHA Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1
ECDHE-RSA-AES128-SHA Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1

ECDHE-PSK-AES256-CBC-SHA384 Kx=ECDHEPSK Au=PSK Enc=AES(256) Mac=SHA384
ECDHE-PSK-AES256-CBC-SHA Kx=ECDHEPSK Au=PSK Enc=AES(256) Mac=SHA1
RSA-PSK-AES256-CBC-SHA384 Kx=RSAPSK Au=RSA Enc=AES(256) Mac=SHA384
DHE-PSK-AES256-CBC-SHA384 Kx=DHEPSK Au=PSK Enc=AES(256) Mac=SHA384
ECDHE-PSK-AES128-CBC-SHA256 Kx=ECDHEPSK Au=PSK Enc=AES(128) Mac=SHA256
ECDHE-PSK-AES128-CBC-SHA Kx=ECDHEPSK Au=PSK Enc=AES(128) Mac=SHA1
RSA-PSK-AES128-CBC-SHA256 Kx=RSAPSK Au=RSA Enc=AES(128) Mac=SHA256
DHE-PSK-AES128-CBC-SHA256 Kx=DHEPSK Au=PSK Enc=AES(128) Mac=SHA256

60 Chapter 15. Ciphers Supported

CHAPTER 16

Supported Libraries and Operating Systems

16.1 OpenSSL

OpenSSL-0.9.7
OpenSSL-0.9.7-beta4
OpenSSL-0.9.7-beta5
OpenSSL-0.9.7-beta5
OpenSSL-0.9.7-beta6
OpenSSL-0.9.7a
OpenSSL-0.9.7b
OpenSSL-0.9.7c
OpenSSL-0.9.7d
OpenSSL-0.9.7e
OpenSSL-0.9.7f
OpenSSL-0.9.7g
OpenSSL-0.9.7h
OpenSSL-0.9.7i
OpenSSL-0.9.7j
OpenSSL-0.9.7k
OpenSSL-0.9.7l
OpenSSL-0.9.7m
OpenSSL-0.9.8
OpenSSL-0.9.8-beta1
OpenSSL-0.9.8-beta2
OpenSSL-0.9.8-beta3
OpenSSL-0.9.8-beta4
OpenSSL-0.9.8-beta5
OpenSSL-0.9.8-beta6
OpenSSL-0.9.8-post-auto-reformat
OpenSSL-0.9.8-post-reformat
OpenSSL-0.9.8-pre-auto-reformat
OpenSSL-0.9.8-pre-reformat
OpenSSL-0.9.8a
OpenSSL-0.9.8b

(continues on next page)

61

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

OpenSSL-0.9.8c
OpenSSL-0.9.8d
OpenSSL-0.9.8e
OpenSSL-0.9.8f
OpenSSL-0.9.8g
OpenSSL-0.9.8h
OpenSSL-0.9.8i
OpenSSL-0.9.8j
OpenSSL-0.9.8k
OpenSSL-0.9.8l
OpenSSL-0.9.8m
OpenSSL-0.9.8m-beta1
OpenSSL-0.9.8n
OpenSSL-0.9.8o
OpenSSL-0.9.8p
OpenSSL-0.9.8q
OpenSSL-0.9.8r
OpenSSL-0.9.8s
OpenSSL-0.9.8t
OpenSSL-0.9.8u
OpenSSL-0.9.8v
OpenSSL-0.9.8w
OpenSSL-0.9.8x
OpenSSL-0.9.8y
OpenSSL-0.9.8za
OpenSSL-0.9.8zb
OpenSSL-0.9.8zc
OpenSSL-0.9.8zd
OpenSSL-0.9.8ze
OpenSSL-0.9.8zf
OpenSSL-0.9.8zg
OpenSSL-0.9.8zh
OpenSSL-1.0.0
OpenSSL-1.0.0-beta1
OpenSSL-1.0.0-beta2
OpenSSL-1.0.0-beta3
OpenSSL-1.0.0-beta4
OpenSSL-1.0.0-beta5
OpenSSL-1.0.0-post-auto-reformat
OpenSSL-1.0.0-post-reformat
OpenSSL-1.0.0-pre-auto-reformat
OpenSSL-1.0.0-pre-reformat
OpenSSL-1.0.0a
OpenSSL-1.0.0b
OpenSSL-1.0.0c
OpenSSL-1.0.0d
OpenSSL-1.0.0e
OpenSSL-1.0.0f
OpenSSL-1.0.0g
OpenSSL-1.0.0h
OpenSSL-1.0.0i
OpenSSL-1.0.0j
OpenSSL-1.0.0k
OpenSSL-1.0.0l
OpenSSL-1.0.0m
OpenSSL-1.0.0n
OpenSSL-1.0.0o

(continues on next page)

62 Chapter 16. Supported Libraries and Operating Systems

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

OpenSSL-1.0.0p
OpenSSL-1.0.0q
OpenSSL-1.0.0r
OpenSSL-1.0.0s
OpenSSL-1.0.0t
OpenSSL-1.0.1
OpenSSL-1.0.1-beta1
OpenSSL-1.0.1-beta2
OpenSSL-1.0.1-beta3
OpenSSL-1.0.1-post-auto-reformat
OpenSSL-1.0.1-post-reformat
OpenSSL-1.0.1-pre-auto-reformat
OpenSSL-1.0.1-pre-reformat
OpenSSL-1.0.1a
OpenSSL-1.0.1b
OpenSSL-1.0.1c
OpenSSL-1.0.1d
OpenSSL-1.0.1e
OpenSSL-1.0.1f
OpenSSL-1.0.1g
OpenSSL-1.0.1h
OpenSSL-1.0.1i
OpenSSL-1.0.1j
OpenSSL-1.0.1k
OpenSSL-1.0.1l
OpenSSL-1.0.1m
OpenSSL-1.0.1n
OpenSSL-1.0.1o
OpenSSL-1.0.1p
OpenSSL-1.0.1q
OpenSSL-1.0.1r
OpenSSL-1.0.1s
OpenSSL-1.0.1t
OpenSSL-1.0.1u
OpenSSL-1.0.2
OpenSSL-1.0.2-beta1
OpenSSL-1.0.2-beta1-fips
OpenSSL-1.0.2-beta2
OpenSSL-1.0.2-beta2-fips
OpenSSL-1.0.2-beta3
OpenSSL-1.0.2-beta3-fips
OpenSSL-1.0.2-fips
OpenSSL-1.0.2-post-auto-reformat
OpenSSL-1.0.2-post-auto-reformat-fips
OpenSSL-1.0.2-post-reformat
OpenSSL-1.0.2-post-reformat-fips
OpenSSL-1.0.2-pre-auto-reformat
OpenSSL-1.0.2-pre-auto-reformat-fips
OpenSSL-1.0.2-pre-reformat
OpenSSL-1.0.2-pre-reformat-fips
OpenSSL-1.0.2a
OpenSSL-1.0.2a-fips
OpenSSL-1.0.2b
OpenSSL-1.0.2b-fips
OpenSSL-1.0.2c
OpenSSL-1.0.2c-fips
OpenSSL-1.0.2d

(continues on next page)

16.1. OpenSSL 63

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

OpenSSL-1.0.2d-fips
OpenSSL-1.0.2e
OpenSSL-1.0.2e-fips
OpenSSL-1.0.2f
OpenSSL-1.0.2f-fips
OpenSSL-1.0.2g
OpenSSL-1.0.2g-fips
OpenSSL-1.0.2h
OpenSSL-1.0.2h-fips
OpenSSL-1.0.2i
OpenSSL-1.0.2i-fips
OpenSSL-1.0.2j
OpenSSL-1.0.2j-fips
OpenSSL-1.0.2k
OpenSSL-1.0.2k-fips
OpenSSL-1.0.2l
OpenSSL-1.0.2l-fips
OpenSSL-1.0.2m
OpenSSL-1.0.2m-fips
OpenSSL-1.0.2n
OpenSSL-1.0.2n-fips
OpenSSL-1.0.2o
OpenSSL-1.0.2o-fips
OpenSSL-1.0.2p
OpenSSL-1.0.2p-fips
OpenSSL-1.0.2q
OpenSSL-1.0.2q-fips
OpenSSL-1.0.2r
OpenSSL-1.0.2r-fips
OpenSSL-1.0.2s
OpenSSL-1.0.2s-fips
OpenSSL-1.0.2t
OpenSSL-1.0.2t-fips
OpenSSL-1.0.2u
OpenSSL-1.0.2u-fips
OpenSSL-1.1.0
OpenSSL-1.1.0-pre1
OpenSSL-1.1.0-pre2
OpenSSL-1.1.0-pre3
OpenSSL-1.1.0-pre4
OpenSSL-1.1.0-pre5
OpenSSL-1.1.0-pre6
OpenSSL-1.1.0a
OpenSSL-1.1.0b
OpenSSL-1.1.0c
OpenSSL-1.1.0d
OpenSSL-1.1.0e
OpenSSL-1.1.0f
OpenSSL-1.1.0g
OpenSSL-1.1.0h
OpenSSL-1.1.0i
OpenSSL-1.1.0j
OpenSSL-1.1.0k
OpenSSL-1.1.0l
OpenSSL-1.1.1
OpenSSL-1.1.1-pre1
OpenSSL-1.1.1-pre2

(continues on next page)

64 Chapter 16. Supported Libraries and Operating Systems

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

OpenSSL-1.1.1-pre3
OpenSSL-1.1.1-pre4
OpenSSL-1.1.1-pre5
OpenSSL-1.1.1-pre6
OpenSSL-1.1.1-pre7
OpenSSL-1.1.1-pre8
OpenSSL-1.1.1-pre9
OpenSSL-1.1.1a
OpenSSL-1.1.1b
OpenSSL-1.1.1c
OpenSSL-1.1.1d
OpenSSL-1.1.1e
OpenSSL-1.1.1f
OpenSSL-1.1.1g
OpenSSL-1.1.1h
OpenSSL-1.1.1i
OpenSSL-FIPS.1.0
OpenSSL-fips-1.2.0
OpenSSL-fips-1.2.1
OpenSSL-fips-1.2.2
OpenSSL-fips-1.2.3
OpenSSL-fips-2.0
OpenSSL-fips-2.0-pl1
OpenSSL-fips-2.0-rc1
OpenSSL-fips-2.0-rc2
OpenSSL-fips-2.0-rc3
OpenSSL-fips-2.0-rc4
OpenSSL-fips-2.0-rc5
OpenSSL-fips-2.0-rc6
OpenSSL-fips-2.0-rc7
OpenSSL-fips-2.0-rc8
OpenSSL-fips-2.0-rc9
OpenSSL-fips-2.0.1
OpenSSL-fips-2.0.2
OpenSSL-fips-2.0.3
OpenSSL-fips-2.0.4
OpenSSL-fips-2.0.5
OpenSSL-fips-2.0.6
OpenSSL-fips-2.0.7
OpenSSL-fips-2.0.8
OpenSSL-fips-2.0.9
OpenSSL-fips-2.0.10
OpenSSL-fips-2.0.11
OpenSSL-fips-2.0.12
OpenSSL-fips-2.0.13
OpenSSL-fips-2.0.14
OpenSSL-fips-2.0.15
OpenSSL-fips-2.0.16

16.2 NSS Libraries

Every version greater than v3.15 (released 2013-05-28 23:37:46)

16.2. NSS Libraries 65

Nubeva TLS Documentation, Release 1.2

NSS 3.15
NSS 3.15.1
NSS 3.15.2
NSS 3.15.3
NSS 3.15.3.1
NSS 3.15.4
NSS 3.15.5
NSS 3.16
NSS 3.16.1
NSS 3.16.2
NSS 3.16.2.1
NSS 3.16.2.2
NSS 3.16.2.3
NSS 3.16.3
NSS 3.16.4
NSS 3.16.5
NSS 3.16.6
NSS 3.17
NSS 3.17.1
NSS 3.17.2
NSS 3.17.3
NSS 3.17.4
NSS 3.18
NSS 3.18.1
NSS 3.19
NSS 3.19.1
NSS 3.19.2
NSS 3.19.3
NSS 3.20
NSS 3.20.1
NSS 3.21
NSS 3.21.1
NSS 3.21.2
NSS 3.21.3
NSS 3.21.4
NSS 3.22
NSS 3.22.1
NSS 3.22.2
NSS 3.23
NSS 3.24
NSS 3.25
NSS 3.25.1
NSS 3.26
NSS 3.26.2
NSS 3.27
NSS 3.27.1
NSS 3.27.2
NSS 3.28
NSS 3.28.1
NSS 3.28.2
NSS 3.28.3
NSS 3.28.4
NSS 3.28.5
NSS 3.29
NSS 3.29.1
NSS 3.29.2
NSS 3.29.3

(continues on next page)

66 Chapter 16. Supported Libraries and Operating Systems

Nubeva TLS Documentation, Release 1.2

(continued from previous page)

NSS 3.29.5
NSS 3.30
NSS 3.30.1
NSS 3.30.2
NSS 3.31
NSS 3.31.1
NSS 3.32
NSS 3.33
NSS 3.34
NSS 3.34.1
NSS 3.35
NSS 3.36
NSS 3.36.1
NSS 3.36.2
NSS 3.36.4
NSS 3.36.5
NSS 3.37
NSS 3.37.1
NSS 3.37.3
NSS 3.38
NSS 3.39
NSS 3.40
NSS 3.36.6
NSS 3.40.1
NSS 3.41
NSS 3.36.7
NSS 3.36.8
NSS 3.42
NSS 3.42.1
NSS 3.43
NSS 3.44
NSS 3.44.1
NSS 3.44.2
NSS 3.44.3
NSS 3.45
NSS 3.46
NSS 3.46.1
NSS 3.47
NSS 3.47.1
NSS 3.48
NSS 3.48.1
NSS 3.49
NSS 3.49.1
NSS 3.49.2
NSS 3.50
NSS 3.51
NSS 3.51.1
NSS 3.52
NSS 3.53
NSS 3.54
NSS 3.55

16.3 WolfSSL

Version v4.3.0

16.3. WolfSSL 67

Nubeva TLS Documentation, Release 1.2

16.4 Linux

Nubeva TLS sensors are supported on Ubuntu, RHEL, CentOS and AWS AMI.

16.5 MS Windows

Nubeva TLS sensors are supported on Windows Server 2012, Server 2012 R2, Server 2016, Server 2019 and Windows
10.

Supported applications on these Microsoft platforms:

68 Chapter 16. Supported Libraries and Operating Systems

Nubeva TLS Documentation, Release 1.2

Ap-
pli-
ca-
tion

Version

Ac-
cess

All

Cor-
tana

All

Drop-
box

91.4.548, 92.4.382, 94.4.384, 95.4.441, 99.4.501, 100.4.409, 101.4.434, 102.4.431, 103.4.383, 104.4.175,
108.4.453, 110.4.458, 111.4.472. 112.4.321, 113.4.507

Excel All
Groove
Mu-
sic

All

Google
Chrome

80.0.3987.132, 80.0.3987.149, 81.0.4044.113, 83.0.4103.97, 83.0.4103.10, 83.0.4103.116,
84.0.4147.89, 84.0.4174.105, 84.0.4147.125, 85.0.4183.83, 85.0.4183.102, 85.0.4183.121, 86.0.4240.75,
86.0.4240.183, 86.0.4240.193, 86.0.4240.198, 87.0.4280.66, 87.0.4280.88, 87.0.4280.141, 88.0.4324.104

In-
foPath

All

Inter-
net
Ex-
plorer

All

Mi-
crosoft
Store

All

Mi-
crosoft
News

All

Mi-
crosoft
Sway

All

Mi-
crosoft
Teams

All

Mi-
crosoft
Word

All

Movies
& TV

All

MS
Dy-
nam-
ics
365
CRM

All

MS
Edge
(old)

44.18362.449.0

MS
Edge
Chromium

80.0.361.66, 80.0.361.69, 80.0.361.109, 83.0.478.44, 83.0.478.45, 83.0.478.54, 83.0.478.56, 83.0.478.58,
83.0.478.61, 84.0.522.44, 84.0.522.49, 84.0.522.52, 84.0.522.59, 84.0.522.63, 85.0.564.41, 85.0.564.44,
85.0.564.51, 85.0.564.63, 86.0.4240.75, 86.0.622.38, 86.0.622.43, 86.0.622.51, 86.0.622.56, 86.0.622.61,
86.0.622.69, 87.0.664.41, 87.0.664.47, 87.0.664.52, 87.0.664.55, 87.0.664.57, 87.0.664.60, 87.0.664.66,
87.0.664.75, 88.0.705.50

MSN
Money

All

MSN
Sports

All

MSN
Weather

All

OneDriveAll
OneNoteAll
Out-
look

All

Power
BI
Desk-
top

All

Pow-
er-
Point

All

Pub-
lisher

All

Skype All

16.5. MS Windows 69

Nubeva TLS Documentation, Release 1.2

Schannel.dll versions supported:

6.1.7601.17514
6.2.17763.802
6.2.9200.22562
6.3.9600.17415
6.3.9600.19473
10.0.14393.1613
10.0.14393.3269
10.0.14393.3750
10.0.14393.3808
10.0.14393.3930
10.0.17763.1
10.0.17763.1217
10.0.17763.1282
10.0.17763.1339
10.0.17763.1457
10.0.17763.802
10.0.18362.1082
10.0.18362.418
10.0.18362.900
10.0.18362.959
10.0.18362.997
10.0.19041.1
10.0.19041.329
10.0.19041.388
10.0.19041.508
10.0.19041.546

70 Chapter 16. Supported Libraries and Operating Systems

CHAPTER 17

Berkeley Packet Filters

Berkeley Packet Filter (BPF) Syntax

The expression consists of one or more primitives. Primitives usually consist of an id (name or number) preceded by
one or more qualifiers. There are three different kinds of qualifier:

type qualifiers say what kind of thing the id name or number refers to. Possible types are host, net , port and
portrange. E.g., ‘host foo’, ‘net 128.3’, ‘port 20’, ‘portrange 6000-6008’. If there is no type qualifier, host is
assumed.

dir qualifiers specify a particular transfer direction to and/or from id. Possible directions are src, dst, src or dst and
src and dst. E.g., ‘src foo’, ‘dst net 128.3’, ‘src or dst port ftp-data’. If there is no dir qualifier, src or dst is
assumed. For some link layers, such as SLIP and the ‘‘cooked” Linux capture mode used for the ‘‘any” device
and for some other device types, the inbound and outbound qualifiers can be used to specify a desired direction.

proto qualifiers restrict the match to a particular protocol. Possible protos are: ether, fddi, tr, wlan, ip, ip6, arp,
rarp, decnet, tcp and udp. E.g., ‘ether src foo’, ‘arp net 128.3’, ‘tcp port 21’, ‘udp portrange 7000-7009’. If
there is no proto qualifier, all protocols consistent with the type are assumed. E.g., ‘src foo’ means ‘(ip or arp
or rarp) src foo’ (except the latter is not legal syntax), ‘net bar’ means ‘(ip or arp or rarp) net bar’ and ‘port 53’
means ‘(tcp or udp) port 53’.

‘fddi’ is actually an alias for ‘ether’; the parser treats them identically as meaning ‘‘the data link level used on the
specified network interface.” FDDI headers contain Ethernet-like source and destination addresses, and often contain
Ethernet-like packet types, so you can filter on these FDDI fields just as with the analogous Ethernet fields. FDDI
headers also contain other fields, but you cannot name them explicitly in a filter expression.

Similarly, ‘tr’ and ‘wlan’ are aliases for ‘ether’; the previous paragraph’s statements about FDDI headers also apply
to Token Ring and 802.11 wireless LAN headers. For 802.11 headers, the destination address is the DA field and the
source address is the SA field; the BSSID, RA, and TA fields aren’t tested.

In addition to the above, there are some special ‘primitive’ keywords that don’t follow the pattern: gateway, broad-
cast, less, greater and arithmetic expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or and not to combine primitives. E.g., ‘host foo
and not port ftp and not port ftp-data’. To save typing, identical qualifier lists can be omitted. E.g., ‘tcp dst port ftp or
ftp-data or domain’ is exactly the same as ‘tcp dst port ftp or tcp dst port ftp-data or tcp dst port domain’.

71

Nubeva TLS Documentation, Release 1.2

Allowable primitives are:

dst host host True if the IPv4/v6 destination field of the packet is host, which may be either an address or a name.

src host host True if the IPv4/v6 source field of the packet is host.

host host True if either the IPv4/v6 source or destination of the packet is host. Any of the above host expressions can
be prepended with the keywords, ip, arp, rarp, or ip6 as in:

ip host host

which is equivalent to:

ether proto \ip and host host

If host is a name with multiple IP addresses, each address will be checked for a match.

ether dst ehost True if the Ethernet destination address is ehost. Ehost may be either a name from /etc/ethers or a
number (see ‘ethers </cgi-bin/man/man2html?5+ethers>‘__(5) for numeric format).

ether src ehost True if the Ethernet source address is ehost.

ether host ehost True if either the Ethernet source or destination address is ehost.

gateway host True if the packet used host as a gateway. I.e., the Ethernet source or destination address was host
but neither the IP source nor the IP destination was host. Host must be a name and must be found both by
the machine’s host-name-to-IP-address resolution mechanisms (host name file, DNS, NIS, etc.) and by the
machine’s host-name-to-Ethernet-address resolution mechanism (/etc/ethers, etc.). (An equivalent expression is

ether host ehost and not host host

which can be used with either names or numbers for host / ehost.) This syntax does not work in IPv6-enabled
configuration at this moment.

dst net net True if the IPv4/v6 destination address of the packet has a network number of net. Net may be either a
name from the networks database (/etc/networks, etc.) or a network number. An IPv4 network number can be
written as a dotted quad (e.g., 192.168.1.0), dotted triple (e.g., 192.168.1), dotted pair (e.g, 172.16), or single
number (e.g., 10); the netmask is 255.255.255.255 for a dotted quad (which means that it’s really a host match),
255.255.255.0 for a dotted triple, 255.255.0.0 for a dotted pair, or 255.0.0.0 for a single number. An IPv6
network number must be written out fully; the netmask is ff:ff:ff:ff:ff:ff:ff:ff, so IPv6 “network” matches are
really always host matches, and a network match requires a netmask length.

src net net True if the IPv4/v6 source address of the packet has a network number of net.

net net True if either the IPv4/v6 source or destination address of the packet has a network number of net.

net net mask netmask True if the IPv4 address matches net with the specific netmask. May be qualified with src or
dst. Note that this syntax is not valid for IPv6 net.

net net/len True if the IPv4/v6 address matches net with a netmask len bits wide. May be qualified with src or dst.

dst port port True if the packet is ip/tcp, ip/udp, ip6/tcp or ip6/udp and has a destination port value of port. The port
can be a number or a name used in /etc/services (see tcp(7) and udp(7)). If a name is used, both the port number
and protocol are checked. If a number or ambiguous name is used, only the port number is checked (e.g., dst
port 513 will print both tcp/login traffic and udp/who traffic, and port domain will print both tcp/domain and
udp/domain traffic).

src port port True if the packet has a source port value of port.

port port True if either the source or destination port of the packet is port.

dst portrange port1-port2 True if the packet is ip/tcp, ip/udp, ip6/tcp or ip6/udp and has a destination port value
between port1 and port2. port1 and port2 are interpreted in the same fashion as the port parameter for port.

72 Chapter 17. Berkeley Packet Filters

Nubeva TLS Documentation, Release 1.2

src portrange port1-port2 True if the packet has a source port value between port1 and port2.

portrange port1-port2 True if either the source or destination port of the packet is between port1 and port2. Any of
the above port or port range expressions can be prepended with the keywords, tcp or udp, as in:

tcp src port port

which matches only tcp packets whose source port is port.

less length True if the packet has a length less than or equal to length. This is equivalent to:

len <= length.

greater length True if the packet has a length greater than or equal to length. This is equivalent to:

len >= length.

ip proto protocol True if the packet is an IPv4 packet (see ip(4P)) of protocol type protocol. Protocol can be a number
or one of the names icmp, icmp6, igmp, igrp, pim, ah, esp, vrrp, udp, or tcp. Note that the identifiers tcp,
udp, and icmp are also keywords and must be escaped via backslash (\), which is \ in the C-shell. Note that this
primitive does not chase the protocol header chain.

ip6 proto protocol True if the packet is an IPv6 packet of protocol type protocol. Note that this primitive does not
chase the protocol header chain.

ip6 protochain protocol True if the packet is IPv6 packet, and contains protocol header with type protocol in its
protocol header chain. For example,

ip6 protochain 6

matches any IPv6 packet with TCP protocol header in the protocol header chain. The packet may contain, for
example, authentication header, routing header, or hop-by-hop option header, between IPv6 header and TCP
header. The BPF code emitted by this primitive is complex and cannot be optimized by BPF optimizer code in
tcpdump, so this can be somewhat slow.

ip protochain protocol Equivalent to ip6 protochain protocol, but this is for IPv4.

ether broadcast True if the packet is an Ethernet broadcast packet. The ether keyword is optional.

ip broadcast True if the packet is an IPv4 broadcast packet. It checks for both the all-zeroes and all-ones broadcast
conventions, and looks up the subnet mask on the interface on which the capture is being done. If the subnet
mask of the interface on which the capture is being done is not available, either because the interface on which
capture is being done has no netmask or because the capture is being done on the Linux “any” interface, which
can capture on more than one interface, this check will not work correctly.

ether multicast True if the packet is an Ethernet multicast packet. The ether keyword is optional. This is shorthand
for ‘ether[0] & 1 != 0’.

ip multicast True if the packet is an IPv4 multicast packet.

ip6 multicast True if the packet is an IPv6 multicast packet.

ether proto protocol True if the packet is of ether type protocol. Protocol can be a number or one of the names ip,
ip6, arp, rarp, atalk, aarp, decnet, sca, lat, mopdl, moprc, iso, stp, ipx, or netbeui. Note these identifiers are
also keywords and must be escaped via backslash (\). [In the case of FDDI (e.g., ‘fddi protocol arp’), Token
Ring (e.g., ‘tr protocol arp’), and IEEE 802.11 wireless LANS (e.g., ‘wlan protocol arp’), for most of those
protocols, the protocol identification comes from the 802.2 Logical Link Control (LLC) header, which is usually
layered on top of the FDDI, Token Ring, or 802.11 header. When filtering for most protocol identifiers on FDDI,
Token Ring, or 802.11, tcpdump checks only the protocol ID field of an LLC header in so-called SNAP format
with an Organizational Unit Identifier (OUI) of 0x000000, for encapsulated Ethernet; it doesn’t check whether
the packet is in SNAP format with an OUI of 0x000000. The exceptions are:

73

Nubeva TLS Documentation, Release 1.2

iso tcpdump checks the DSAP (Destination Service Access Point) and SSAP (Source Service Access
Point) fields of the LLC header;

stp and netbeui tcpdump checks the DSAP of the LLC header;

atalk tcpdump checks for a SNAP-format packet with an OUI of 0x080007 and the AppleTalk etype.

In the case of Ethernet, tcpdump checks the Ethernet type field for most of those protocols. The exceptions are:

iso, stp, and netbeui tcpdump checks for an 802.3 frame and then checks the LLC header as it does
for FDDI, Token Ring, and 802.11;

atalk tcpdump checks both for the AppleTalk etype in an Ethernet frame and for a SNAP-format
packet as it does for FDDI, Token Ring, and 802.11;

aarp tcpdump checks for the AppleTalk ARP etype in either an Ethernet frame or an 802.2 SNAP
frame with an OUI of 0x000000;

ipx tcpdump checks for the IPX etype in an Ethernet frame, the IPX DSAP in the LLC header, the
802.3-with-no-LLC-header encapsulation of IPX, and the IPX etype in a SNAP frame.

decnet src host True if the DECNET source address is host, which may be an address of the form ‘‘10.123’‘, or a
DECNET host name. [DECNET host name support is only available on ULTRIX systems that are configured to
run DECNET.]

decnet dst host True if the DECNET destination address is host.

decnet host host True if either the DECNET source or destination address is host.

ifname interface True if the packet was logged as coming from the specified interface (applies only to packets logged
by OpenBSD’s pf(4)).

on interface Synonymous with the ifname modifier.

rnr num True if the packet was logged as matching the specified PF rule number (applies only to packets logged by
OpenBSD’s pf(4)).

rulenum num Synonymous with the rnr modifier.

reason code True if the packet was logged with the specified PF reason code. The known codes are: match, bad-
offset, fragment, short, normalize, and memory (applies only to packets logged by OpenBSD’s pf(4)).

rset name True if the packet was logged as matching the specified PF ruleset name of an anchored ruleset (applies
only to packets logged by pf(4)).

ruleset name Synonymous with the rset modifier.

srnr num True if the packet was logged as matching the specified PF rule number of an anchored ruleset (applies
only to packets logged by pf(4)).

subrulenum num Synonymous with the srnr modifier.

action act True if PF took the specified action when the packet was logged. Known actions are: pass and block
(applies only to packets logged by OpenBSD’s pf(4)).

ip, ip6, arp, rarp, atalk, aarp, decnet,**iso**, stp, ipx, netbeui Abbreviations for:

ether proto p

where p is one of the above protocols.

lat, moprc, mopdl Abbreviations for:

ether proto p

74 Chapter 17. Berkeley Packet Filters

Nubeva TLS Documentation, Release 1.2

where p is one of the above protocols. Note that tcpdump does not currently know how to parse these protocols.

vlan [vlan_id] True if the packet is an IEEE 802.1Q VLAN packet. If [vlan_id] is specified, only true if the packet
has the specified vlan_id. Note that the first vlan keyword encountered in expression changes the decoding
offsets for the remainder of expression on the assumption that the packet is a VLAN packet. The vlan [vlan_id]
expression may be used more than once, to filter on VLAN hierarchies. Each use of that expression increments
the filter offsets by 4. For example:

vlan 100 && vlan 200

filters on VLAN 200 encapsulated within VLAN 100, and

vlan && vlan 300 && ip

filters IPv4 protocols encapsulated in VLAN 300 encapsulated within any higher order VLAN.

mpls [label_num] True if the packet is an MPLS packet. If [label_num] is specified, only true is the packet has the
specified label_num. Note that the first mpls keyword encountered in expression changes the decoding offsets
for the remainder of expression on the assumption that the packet is a MPLS-encapsulated IP packet. The mpls
[label_num] expression may be used more than once, to filter on MPLS hierarchies. Each use of that expression
increments the filter offsets by 4. For example:

mpls 100000 && mpls 1024

filters packets with an outer label of 100000 and an inner label of 1024, and

mpls && mpls 1024 && host 192.9.200.1

filters packets to or from 192.9.200.1 with an inner label of 1024 and any outer label.

pppoed True if the packet is a PPP-over-Ethernet Discovery packet (Ethernet type 0x8863).

pppoes True if the packet is a PPP-over-Ethernet Session packet (Ethernet type 0x8864). Note that the first pp-
poes keyword encountered in expression changes the decoding offsets for the remainder of expression on the
assumption that the packet is a PPPoE session packet. For example:

pppoes && ip

filters IPv4 protocols encapsulated in PPPoE.

tcp, udp, icmp Abbreviations for:

ip proto p or ip6 proto p

where p is one of the above protocols.

iso proto protocol True if the packet is an OSI packet of protocol type protocol. Protocol can be a number or one of
the names clnp, esis, or isis.

clnp, esis, isis Abbreviations for:

iso proto p

where p is one of the above protocols.

l1, l2, iih, lsp, snp, csnp, psnp Abbreviations for IS-IS PDU types.

vpi n True if the packet is an ATM packet, for SunATM on Solaris, with a virtual path identifier of n.

vci n True if the packet is an ATM packet, for SunATM on Solaris, with a virtual channel identifier of n.

75

Nubeva TLS Documentation, Release 1.2

lane True if the packet is an ATM packet, for SunATM on Solaris, and is an ATM LANE packet. Note that the first
lane keyword encountered in expression changes the tests done in the remainder of expression on the assumption
that the packet is either a LANE emulated Ethernet packet or a LANE LE Control packet. If lane isn’t specified,
the tests are done under the assumption that the packet is an LLC-encapsulated packet.

llc True if the packet is an ATM packet, for SunATM on Solaris, and is an LLC-encapsulated packet.

oamf4s True if the packet is an ATM packet, for SunATM on Solaris, and is a segment OAM F4 flow cell (VPI=0 &
VCI=3).

oamf4e True if the packet is an ATM packet, for SunATM on Solaris, and is an end-to-end OAM F4 flow cell (VPI=0
& VCI=4).

oamf4 True if the packet is an ATM packet, for SunATM on Solaris, and is a segment or end-to-end OAM F4 flow
cell (VPI=0 & (VCI=3 | VCI=4)).

oam True if the packet is an ATM packet, for SunATM on Solaris, and is a segment or end-to-end OAM F4 flow cell
(VPI=0 & (VCI=3 | VCI=4)).

metac True if the packet is an ATM packet, for SunATM on Solaris, and is on a meta signaling circuit (VPI=0 &
VCI=1).

bcc True if the packet is an ATM packet, for SunATM on Solaris, and is on a broadcast signaling circuit (VPI=0 &
VCI=2).

sc True if the packet is an ATM packet, for SunATM on Solaris, and is on a signaling circuit (VPI=0 & VCI=5).

ilmic True if the packet is an ATM packet, for SunATM on Solaris, and is on an ILMI circuit (VPI=0 & VCI=16).

connectmsg True if the packet is an ATM packet, for SunATM on Solaris, and is on a signaling circuit and is a Q.2931
Setup, Call Proceeding, Connect, Connect Ack, Release, or Release Done message.

metaconnect True if the packet is an ATM packet, for SunATM on Solaris, and is on a meta signaling circuit and is a
Q.2931 Setup, Call Proceeding, Connect, Release, or Release Done message.

expr relop expr True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr is an arithmetic expression
composed of integer constants (expressed in standard C syntax), the normal binary operators [+, -, *, /, &, |, <<,
>>], a length operator, and special packet data accessors. Note that all comparisons are unsigned, so that, for
example, 0x80000000 and 0xffffffff are > 0. To access data inside the packet, use the following syntax:

proto [expr : size]

Proto is one of ether, fddi, tr, wlan, ppp, slip, link, ip, arp, rarp, tcp, udp, icmp, ip6 or radio, and indicates
the protocol layer for the index operation. (ether, fddi, wlan, tr, ppp, slip and link all refer to the link layer.
radio refers to the “radio header” added to some 802.11 captures.) Note that tcp, udp and other upper-layer
protocol types only apply to IPv4, not IPv6 (this will be fixed in the future). The byte offset, relative to the
indicated protocol layer, is given by expr. Size is optional and indicates the number of bytes in the field of
interest; it can be either one, two, or four, and defaults to one. The length operator, indicated by the keyword
len, gives the length of the packet.

For example, ‘ether[0] & 1 != 0’ catches all multicast traffic. The expression ‘ip[0] & 0xf != 5’ catches all IPv4
packets with options. The expression ‘ip[6:2] & 0x1fff = 0’ catches only unfragmented IPv4 datagrams and frag
zero of fragmented IPv4 datagrams. This check is implicitly applied to the tcp and udp index operations. For
instance, tcp[0] always means the first byte of the TCP header, and never means the first byte of an intervening
fragment.

Some offsets and field values may be expressed as names rather than as numeric values. The following protocol
header field offsets are available: icmptype (ICMP type field), icmpcode (ICMP code field), and tcpflags (TCP
flags field).

76 Chapter 17. Berkeley Packet Filters

Nubeva TLS Documentation, Release 1.2

The following ICMP type field values are available: icmp-echoreply, icmp-unreach, icmp-sourcequench,
icmp-redirect, icmp-echo, icmp-routeradvert, icmp-routersolicit, icmp-timxceed, icmp-paramprob,
icmp-tstamp, icmp-tstampreply, icmp-ireq, icmp-ireqreply, icmp-maskreq, icmp-maskreply.

The following TCP flags field values are available: tcp-fin, tcp-syn, tcp-rst, tcp-push, tcp-ack, tcp-urg.

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special to the Shell and must be es-
caped). Negation (‘**!**’ or ‘not’). Concatenation (‘**&&**’ or ‘and’). Alternation (‘**||**’ or ‘or’).

Negation has highest precedence. Alternation and concatenation have equal precedence and associate left to right.
Note that explicit and tokens, not juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is assumed. For example,

not host vs and ace

is short for

not host vs and host ace

which should not be confused with

not (host vs or ace)

Expression arguments can be passed to tcpdump as either a single argument or as multiple arguments, whichever is
more convenient. Generally, if the expression contains Shell metacharacters, it is easier to pass it as a single, quoted
argument. Multiple arguments are concatenated with spaces before being parsed.

EXAMPLES

To capture all packets arriving at or departing from sundown:

host sundown

To capture traffic between helios and either hot or ace:

host helios and \(hot or ace \)

To capture all IP packets between ace and any host except helios:

ip host ace and not helios

To capture all traffic between local hosts and hosts at Berkeley:

net ucb-ether

To capture all ftp traffic through internet gateway snup: (note that the expression is quoted to prevent the shell from
(mis-)interpreting the parentheses):

gateway snup and (port ftp or ftp-data)

To capture traffic neither sourced from nor destined for local hosts (if you gateway to one other net, this stuff should
never make it onto your local net).

ip and not net localnet

77

Nubeva TLS Documentation, Release 1.2

To capture the start and end packets (the SYN and FIN packets) of each TCP conversation that involves a non-local
host.

tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet

To capture all IPv4 HTTP packets to and from port 80, i.e. print only packets that contain data, not, for example, SYN
and FIN packets and ACK-only packets. (IPv6 is left as an exercise for the reader.)

tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)

To capture IP packets longer than 576 bytes sent through gateway snup:

gateway snup and ip[2:2] > 576

To capture IP broadcast or multicast packets that were not sent via Ethernet broadcast or multicast:

ether[0] & 1 = 0 and ip[16] >= 224

To capture all ICMP packets that are not echo requests/replies (i.e., not ping packets):

icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply

This was taken from the man page of ‘tcpdump <http://www.tcpdump.org/>‘__.

78 Chapter 17. Berkeley Packet Filters

CHAPTER 18

AWS

18.1 Using AWS VPC Traffic Mirrors

To set up a traffic mirroring session please review . Additional information is available on the .

18.2 Creating AWS IAM Role for Custom Tag Support

To enable support for AWS Custom Tags, the EC2 instance must have additional AWS permissions that are not enabled
by default. The permissions granted by this IAM roles are read-only and will only apply to the EC2 instance itself.
The EC2 instance needs permission to read its own tags so it can report them to the SaaS console. The step-by-step
instructions for creating these permissions is below.

1. First, go to your AWS Console and select the IAM service. Now click on create role.

2. Choose which service will use the role. This will be EC2. This click the Next:Permissions at the bottom of the
page.

79

Nubeva TLS Documentation, Release 1.2

3. Now you will create a new policy which grants the appropriate permissions. Click on “Create Policy”. This will
spawn a new tab, so remember to come back to this tab when creation is complete.

4. On the create policy screen, select the JSON tab. You will be pasting in the JSON config below. Then select
review policy.

80 Chapter 18. AWS

Nubeva TLS Documentation, Release 1.2

{

“Version”: “2012-10-17”,

“Statement”: [

{

“Effect”: “Allow”,

“Action”: [

“ec2:DescribeInstances”

],

“Resource”: “*”

}

]

}

5. Now give your policy a name and a description; then click create policy.

6. Remember after creating the policy, go BACK to your Role Creation tab to continue.

7. Now, refresh the policies by clicking the circular arrows on the right. Then search for your newly created policy,
here Nubeva-Describe-Instances. Select this then click Next:Tags at the bottom right

18.2. Creating AWS IAM Role for Custom Tag Support 81

Nubeva TLS Documentation, Release 1.2

8. You can add any tags that you like this will not impact how Nubeva operates or read EC2 instance AWS custom
tags.

9. Now give your role a name, and save it.

10. The final step is to associate this IAM role with an EC2 instance. You can do this any number of ways via the
CLI or automation tools. In the GUI, go back to the EC2 console and select the EC2 instance that needs this
new role. Then select, Actions - Instance Settings - Attach/Replace IAM Role

82 Chapter 18. AWS

Nubeva TLS Documentation, Release 1.2

11. Choose your newly created role and hit apply. You should receive a green success message.

12. Now, this IAM role will be attached to the EC2 instance and will be visible on the EC2 console details for this
host.

18.2. Creating AWS IAM Role for Custom Tag Support 83

	Nubeva TLS Overview
	Getting Started
	First Time Users

	TLS Key Extraction
	Installing Nubeva Sensors
	Creating Source Groups
	Launching Decryptors

	Key Extraction QuickStart
	Projects and Key DBs
	Set up a Private Key DB

	Set up a Fast Key DB
	Sensor Container
	Traffic Generator - Optional
	Fast Key DB

	TLS Key Record Formats
	Modifying Project Elements
	Packet Mirroring
	Creating Destinations
	Creating Connections
	Decrypting AWS VPC Traffic Mirroring
	Monitoring Sensors and Decryptors

	TLS API
	Deploying Security Tools
	Tool Launcher
	Moloch
	ntopng
	Suricata
	Wireshark
	Zeek

	Help and Support
	Frequently Asked Questions
	OS Vendor Changes
	Government/Compliance Issues
	Interaction with AV/Malware/EDR Products
	TPM-type solutions
	Protocol Updates, Changes & Additions

	Installing Docker
	Ubuntu 18.04
	AWS Linux
	AWS Linux 2
	Cent OS 7
	Red Hat Enterprise Linux 7.5 (RHEL)
	Cloud Provider Instructions

	Ciphers Supported
	Supported Libraries and Operating Systems
	OpenSSL
	NSS Libraries
	WolfSSL
	Linux
	MS Windows

	Berkeley Packet Filters
	AWS
	Using AWS VPC Traffic Mirrors
	Creating AWS IAM Role for Custom Tag Support

